Giancoli Solutions on Video

Learn physics easily with guided practice.
Achieve your goals with top grades.

Free Trial

Get instant access to 3,500+ 7th and 6th Edition solutions.

Trusted by more than 1,900 students

These videos are 40 times more valuable than lecture, the text book, and so much cheeper and efficient than a private tutor.

Just wanted to drop a note and thank you for this amazing service! And thank you for working hard on this, it is greatly appreciated :D

The videos were extremely helpful. You can play them over and over and pause them to review. The narrator explained the steps beautifully and provided details on performing the algebraic manipulations. Different colored pens made it easy to differentiate steps. My Physics teacher often moved through the material very fast in class. The videos allowed me to review areas I found difficult as many times as I needed. Giancoli Answers was a wonderful learning tool for understanding Physics.

This is a wonderful service. He goes over all of the problems of each chapter and gives both the answer in a quick text form (good if you are on your cell in the library etc) AND has a video which explains the entire problem if you want a detailed explanation. It's like having a tutor, which is a huge help! The cost is reasonable especially for the instruction you get-and WAY cheaper than the ripoff answer guides that the textbook business wants to force you to buy. Give this a month try and i promise you will want to keep using it. Huge help.


  • 1,930 video solutions for all regular problems in Giancoli's 7th Edition and 1,681 solutions for most regular problems in the 6th Edition.
  • Final answer provided in text form for quick reference above each video, and formatted nicely as an equation, like $E=mc^2$. This is useful if you are in the library or have a slow internet connection.

  • Pen colors make the solutions clear. Red is used to illustrate algebra steps, and to substitute numeric values in the final step of a solution. When a solution switches to a new train of thought a different pen color emphasizes the switch, so that solutions are very methodical and organized.
  • Solutions are classroom tested, and created by an experienced physics teacher.
  • Videos are delivered with a high performance content delivery network. No waiting for videos to load or buffer.
  • Pause, rewind, repeat, and never miss what is being said.

Sample solution

Giancoli 7th Edition, Chapter 4, Problem 62


Recent questions and answers

Hi msjmai, thanks for the comment. Since the coordinate system is defined as positive down the ramp, whereas the applied force is up the ramp, this makes the applied force is in the negative direction. The screenshot for the video shows +1600N at the particular moment the screenshot was taken, but at 1:16 in the video I mention that it should actually be negative.

Mr. Dychko

Super, I'm glad!

Thank you that helped me a lot :)

The answer at the top of the page says -1600N and I believe it should be a positive number (+1600N).

Hi hockey11, thanks for your question. The answer is definitely $7.5 \textrm{ m}$, as shown, and not $14.1 \textrm{ m}$. I think the equation you're looking at is $\dfrac{1}{2} \times 9.8 \textrm{ m/s}^2 \times (3.0 \textrm{ s})^2$, is that right? It's correct that the $\textrm{s}^2$ units cancel, as you say. However, the numbers do not cancel. This means the calculation is $\dfrac{1}{2} \times 9.8 \times (3.0)^2$ with units of $\textrm{m}$ since the $\textrm{s}^2$ units cancel.

I hope this helps,
Mr. Dychko