Giancoli Solutions on Video

Learn physics easily with guided practice.
Achieve your goals with top grades.

Free Trial

Get instant access to 3,500+ 7th and 6th Edition solutions.

Trusted by more than 2,700 students

Melinda McKinney, Coconino Community College, Flagstaff, Arizona

As a Physics Instructor for the first time at a Community College, I found this resource incredibly helpful for my students and I highly recommend it to anyone using Giancoli's Textbook.

Nate, University of Nevada, Reno

The solutions are very easy to comprehend and helped an astronomical amount! They helped me to fully comprehend what we went over in class, and proved to be much more useful than what was discussed during lectures. Cannot thank you enough for helping me get an A in physics and leaving the GPA intact. Thank you so much! Will definitely use this service again next semester.

Richard Yang, UC Davis, Biology Major

Thanks for helping me earn an A in physics! Physics has never been my strong point. In high school I failed both my physics finals, and in college I am forced to take physics as a requirement for my biology degree, so I really dreaded starting the physics sequence. I couldn't understand my professor during lecture or the answer keys that he posted, so I really needed supplementary homework help. I can say that your videos are 10X more effective than the professor's and TA's office hours that I have attended. Your videos are the best...even more so than Khan Academy's physics videos!

Kim, Tunxis Community College in Farmington, CT

The videos were extremely helpful. You can play them over and over and pause them to review. The narrator explained the steps beautifully and provided details on performing the algebraic manipulations. Different colored pens made it easy to differentiate steps. My Physics teacher often moved through the material very fast in class. The videos allowed me to review areas I found difficult as many times as I needed. Giancoli Answers was a wonderful learning tool for understanding Physics.


  • 1,930 video solutions for all regular problems in Giancoli's 7th Edition and 1,681 solutions for most regular problems in the 6th Edition.
  • Final answer provided in text form for quick reference above each video, and formatted nicely as an equation, like $E=mc^2$. This is useful if you are in the library or have a slow internet connection.

  • Pen colors make the step-by-step solutions clear. Red is used to illustrate algebra steps, and to substitute numeric values in the final step of a solution. When a solution switches to a new train of thought a different pen color emphasizes the switch, so that solutions are very methodical and organized.
  • Solutions are classroom tested, and created by an experienced physics teacher.
  • Videos are delivered with a high performance content delivery network. No waiting for videos to load or buffer.
  • Pause, rewind, repeat, and never miss what is being said.

Sample solution

Giancoli 7th Edition, Chapter 5, Problem 12


Recent questions and answers

Giancoli 6th Edition, Chapter 14, Problem 25

By sulaiman_gos on Tue, 01/10/2017 - 12:21

hi .. I have a question here .. why you keep solving with ΔT as it's ( Ti - Tf ) but it is actually ΔT = ( Tf - Ti ) !? please I need explanation!!

Giancoli 7th Edition, Chapter 17, Problem 2

By a_murayyan on Tue, 01/10/2017 - 06:51

in the answer box, don't you mean 2.72 X 10^-17 J?

Giancoli 6th Edition, Chapter 7, Problem 35

By upasna.us1 on Sun, 01/08/2017 - 20:28

I still don't understand why the initial velocity of the moving car is equal to the final velocity of both vehicles together? Could you explain this please?

Giancoli 6th Edition, Chapter 2, Problem 44

By dmorochnick on Sat, 12/31/2016 - 07:40

At about -2:05, shouldn't acceleration be negative: -9.8 yielding the solution d=4.3m instead of 2.1m?

By Mr. Dychko on Sun, 01/01/2017 - 01:15

Hi dmorochnick, thanks for the question. Earlier in the video I mentioned that the coordinate system was chosen so that down is positive. While the convention is that if one says nothing about the coordinate system, the assumption is that up is positive, is OK to explicitly change that. The choice is just personal preference. Where it's convenient, I sometimes prefer to make down positive to avoid substituting many negative values into the formula since I find so many negatives, and subtracting negatives, to be confusing. If you wish to have up as positive, it's totally OK to do so. You would arrive at the same answer (not $4.3 \textrm{ m}$), since keep in mind that the displacement past the window would also have to be negative since it's downward (which in your coordinate system is the negative direction if up is positive).

All the best,
Mr. Dychko

Giancoli 6th Edition, Chapter 6, Problem 3

By nalakija on Thu, 12/08/2016 - 15:52

Why are all the editions labeled as one??? Messing me up..

By Mr. Dychko on Thu, 12/08/2016 - 23:53

Hi nalakija, thanks for the comment. Could you please be more specific? I'm seeing editions labeled as "7th Edition", "6th Edition" and "Global Edition" in the menu bar. Where are you seeing them labelled as one?

Mr. Dychko

Giancoli 7th Edition, Chapter 6, Problem 37

By jmarra_villanova on Wed, 12/07/2016 - 20:31

Hi, how do you distinguish whether to use KEf + PEf = KEi + PEi on a spring question like this, rather than using Wext = DeltaPE in a question like #35?
Thank you

By Mr. Dychko on Thu, 12/08/2016 - 23:51

Hi jmarra_villanova,

Thanks for the question. The formula $KE_f + PE_f = KE_i + PE_i$ is a law, which means it's always valid. This is an algebraic way of saying energy is conserved after a movement of some kind. As a law, it could also be used in #35 instead of $W_{ext} = \Delta PE$. Doing so would have looked like this: $0 + mgy_2 = 0 + mgy_1 + \dfrac{1}{2}k(y_2 - y_1)^2$, where the zero's are substituting for kinetic energy, of which there's none since in #35 the block isn't moving (or the movement is so slow as to be negligible), and $(y_2 - y_1)$ is the amount the spring was stretched. Using $W_{ext} = \Delta PE$ is just a convenience since it reduces a couple of algebra steps. When in doubt, use conservation of energy.

Hope that helps,
Mr. Dychko

Giancoli 7th "Global" Edition, Chapter 12, Problem 35

By maia.fehr.oth23 on Thu, 12/01/2016 - 21:44

Why 331 and not 343?

Giancoli 7th Edition, Chapter 10, Problem 40

By odelay.chewy on Fri, 11/25/2016 - 00:47

I am struggling understanding the funky algebra used in this step. You kind of gloss over it. Could you show it step for step?

By Mr. Dychko on Sat, 11/26/2016 - 11:39

Hi odelay.chewy,

Thanks for the question. I'm away from my recording equipment at the moment, but I'll try to give some highlights here. We start with saying the total forces directed up equal the total forces directed down, then I make a substitution for each up force with the archimedes principle that the buoyant force is the weight of fluid displaced, which is $F = \rho V g$, and the down forces are the usual weight formula $F = mg$. Then, in green, the volume of the wood and lead is expressed in terms of their density and mass. This is in turn substituted (using red) for each volume factor in the up force terms. The specific gravity of wood replaces the ratio of the density of water to wood. Then comes a confusing line where the mass of the wood is shown moving to the left, but actually ends up on the right. The thing to notice with that line is that we're collecting like terms. We're placing the wood terms together on one side, and the lead terms on the other side. The mass of lead and mass of wood are factored out on their respective sides, leaving us with some bracket multiplied by a mass on each side. We're interested in knowing the mass of lead, so we divide both sides by the bracket by which the lead mass is multiplied. Then we plug and chug. Hopefully this video commentary is a bit helpful...

All the best,
Mr. Dychko